

Engineered Wood Products: I-Joists LVL PSL LSL

- Properties
- NDS criteria
- Literature & Design Aids
- Applications



University of Michigan, TCAUP

Wood

Slide 1 of 51

APA – E30

Engineered Wood CONSTRUCTION GUIDE

A GUIDE TO ENGINEERED WOOD PRODUCTS

The evolution of engineered wood products has greatly expanded building options and methods in all forms of residential and commercial construction. The product section of this APA guide provides product information and specification recommendations for several of the most common engineered wood products—plywood, oriented strand board, glulam, structural composite lumber (SCL) and I-joists. Other engineered wood products that are often used in the construction systems described in this guide include cross-laminated timber (CLT) and Rim Board®.

"Engineered wood" describes wood products that are manufactured for structural applications. Plywood has been used since the 1940s and is considered by many to be the original engineered wood product. Engineered wood products are made by combining wood strands, veneers, lumber or other wood fiber with moisture-resistant adhesive to form a larger composite structural unit. They are designed and manufactured to maximize the natural strength and stiffness characteristics of wood by optimally orienting the wood veneers, strands or laminations and by combining wood with durable structural adhesives.

Form No. E30X • © 2019 APA – The Engineered Wood Association • www.apawood.org

University of Michigan, TCAUP


Wood

Slide 2 of 51

Performance Rated I-Joists

DESIGN AND CONSTRUCTION GUIDE

Performance Rated I-Joists

We have local representatives in major U.S. cities and in Canada who can help answer questions involving APA engineered products. For additional assistance in specifying engineered wood products, contact us:

APA HEADQUARTERS
7011 S. Alameda Street • Suite 100 • Denver, CO 80231-3746
(303) 565-4100 • Fax: (303) 565-7245

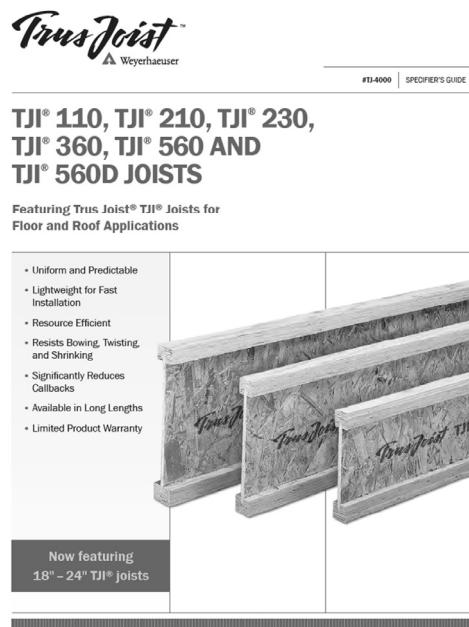
PRODUCT SUPPORT HELP DESK
(800) 420-1401 • helpdesk.apawood.org

DISCLAIMER
The information contained herein is based on APA – The Engineered Wood Association's continuing program of research and testing. The information is intended for use by qualified design professionals. Neither APA, nor its members make any warranties, expressed or implied, or assume any legal liability or responsibility for the use of this publication. Consult your local jurisdiction or design professional for necessary codes and regulations. The use of APA products and services does not constitute control over quality, workmanship or the conditions under which engineered wood products are used. It cannot assume responsibility for product performance or designs as actually constructed.

www.apawood.org

Form No. Z725G (Revised March 2020)

© 2020 APA – The Engineered Wood Association



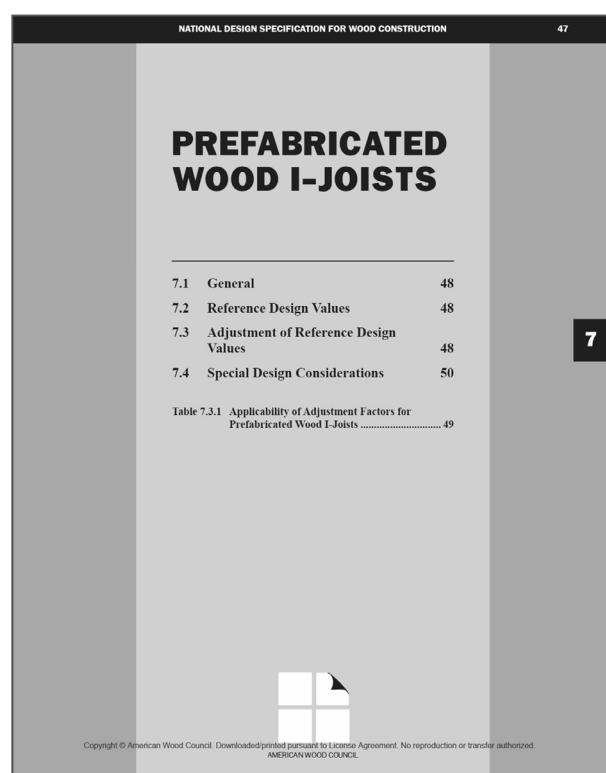
REPRESENTING THE ENGINEERED WOOD INDUSTRY

APA – manufacture of I Joists

Manufactures – e.g. Weyerhaeuser

University of Michigan, TCAUP

Wood


Slide 5 of 51

NDS – Chap. 7

- General
- Adjustment Factors

7.1.2 Definition

The term “prefabricated wood I-joist” refers to a structural member manufactured using sawn or structural composite lumber flanges and wood structural panel webs bonded together with exterior exposure adhesives, forming an “I” cross-sectional shape.

University of Michigan, TCAUP

Wood

Slide 6 of 51

7.2 Reference Design Values

Reference design values for prefabricated wood I-joists shall be obtained from the prefabricated wood I-joist manufacturer's literature or code evaluation reports.

7.3 Adjustment of Reference Design Values

7.3.2 Load Duration Factor, C_D (ASD Only)

All reference design values except stiffness, EI , $(EI)_{min}$, and K , shall be multiplied by load duration factors, C_D , as specified in 2.3.2.

7.3.3 Wet Service Factor, C_M

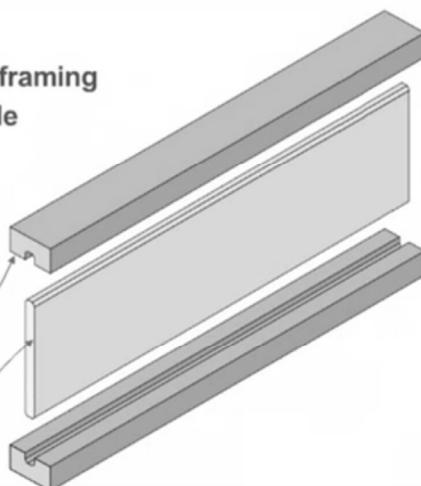
Reference design values for prefabricated wood I-joists are applicable to dry service conditions as specified in 7.1.4 where $C_M = 1.0$. When the service conditions differ from the specified conditions, adjustments for high moisture shall be in accordance with information provided by the prefabricated wood I-joist manufacturer.

7.3.4 Temperature Factor, C_t

When structural members will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C), reference design values shall be multiplied by the temperature factors, C_t , specified in 2.3.3. For M_r , V_r , R_r , EI , $(EI)_{min}$, and K use C_t for F_b , F_v , F_w , E , E_{min} , and F_v , respectively.

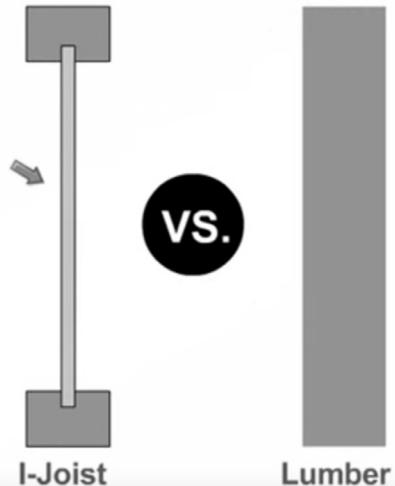
Table 7.3.1 Applicability of Adjustment Factors for Prefabricated Wood I-Joists

	ASD only	ASD and LRFD				LRFD only		
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Repetitive Member Factor	Format Conversion Factor	Resistance Factor
							K_F	ϕ
$M_r' = M_r$	x	C_D	C_M	C_t	C_L	C_r	K_F	0.85 λ
$V_r' = V_r$	x	C_D	C_M	C_t	-	-	K_F	0.75 λ
$R_r' = R_r$	x	C_D	C_M	C_t	-	-	K_F	0.75 λ
$EI' = EI$	x	-	C_M	C_t	-	-	-	-
$(EI)_{min}' = (EI)_{min}$	x	-	C_M	C_t	-	-	K_F	0.85 -
$K' = K$	x	-	C_M	C_t	-	-	-	-

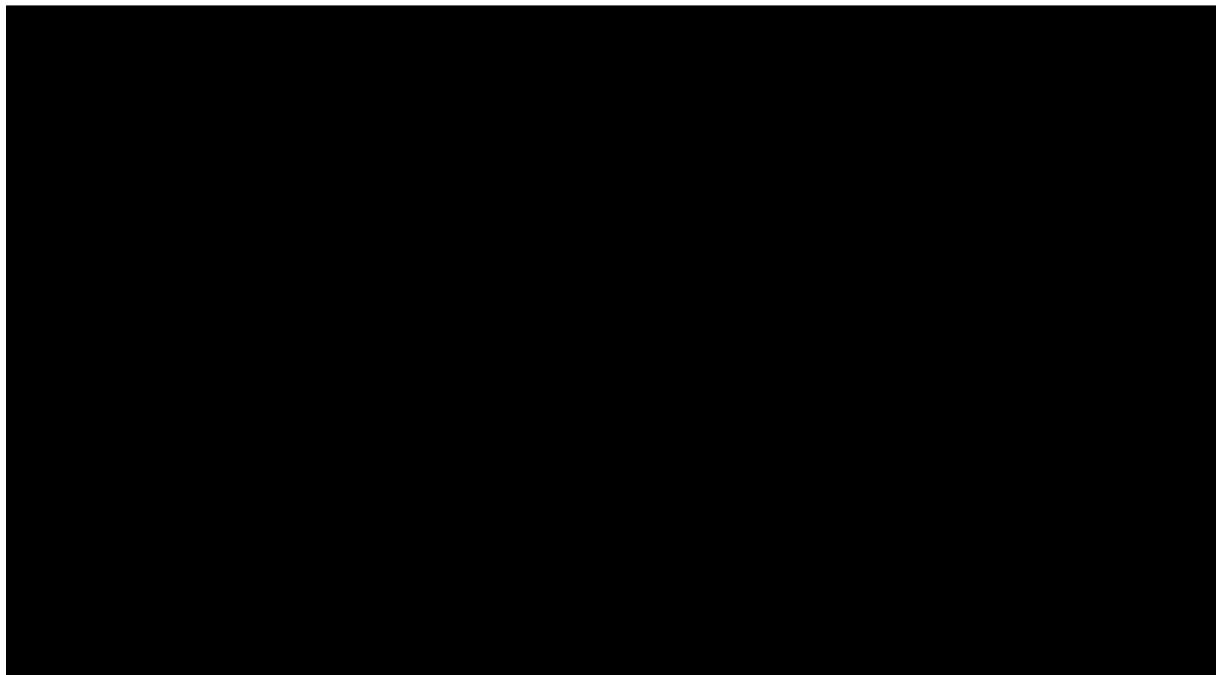

I-Joists

I-joist

- Used for floor & roof framing
- Long lengths available

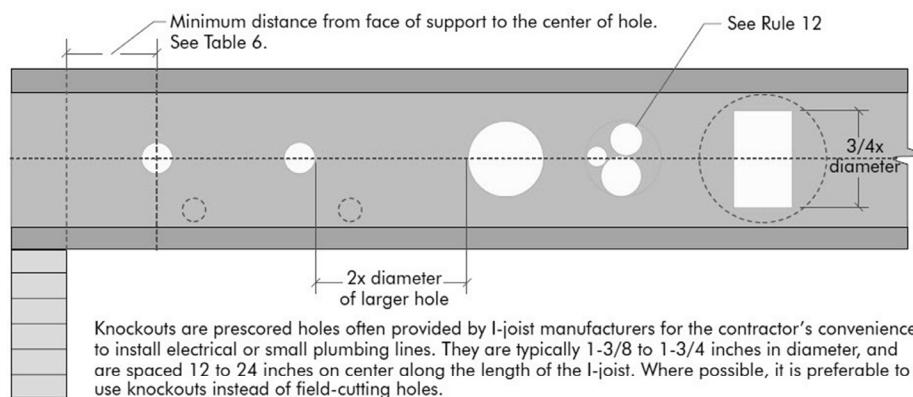

Flange
(LVL or lumber)

Web
(OSB)



I-Joists

- I-Joist vs. Lumber
- Both at 16" o.c.
- 36% less wood fiber
- I-Joist at 19.2" o.c & Lumber at 16" o.c.
- 46% less wood fiber



I-Joists – APA - construction methods

I-Joists

PRI JOIST TYPICAL HOLES

University of Michigan, TCAUP

Wood

Slide 11 of 51

I-Joists

Cutting the Hole

- Never drill, cut or notch the flange, or over-cut the web.
- Holes in webs should be cut with a sharp saw.
- For rectangular holes, avoid over-cutting the corners, as this can cause unnecessary stress concentrations. Slightly rounding the corners is recommended. Starting the rectangular hole by drilling a 1-inch-diameter hole in each of the four corners and then making the cuts between the holes is another good method to minimize damage to the I-joist.

University of Michigan, TCAUP

Wood

Slide 12 of 51

Weyerhaeuser – Trus Joist - TJI

ALLOWABLE HOLES

9½"-16" JOISTS

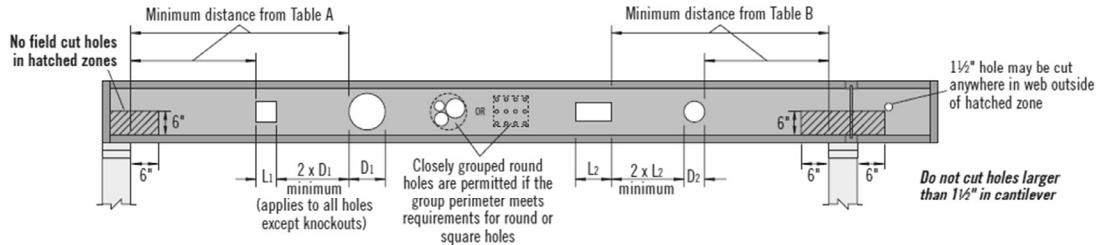
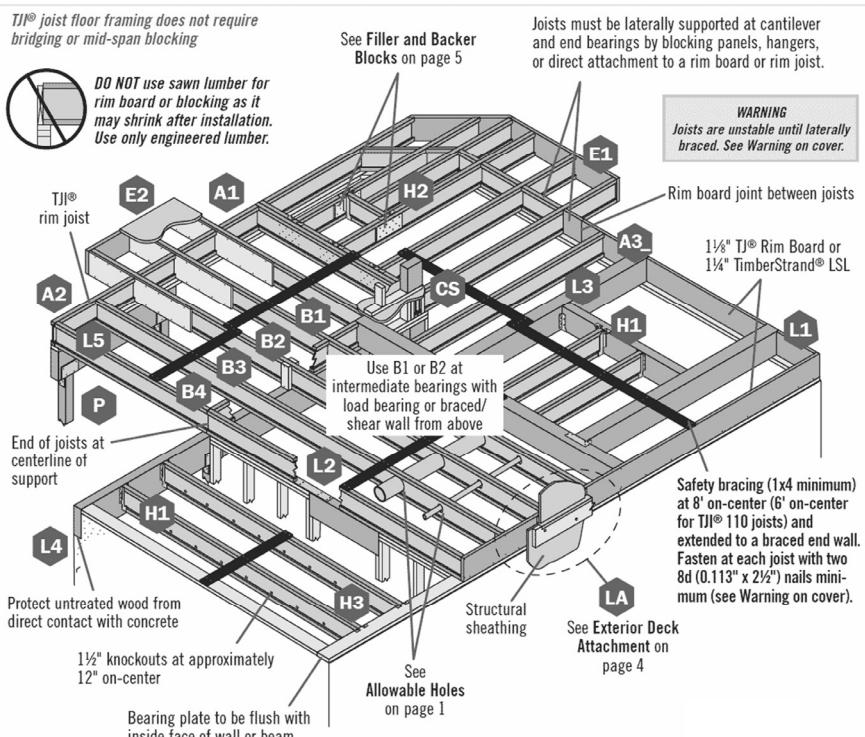
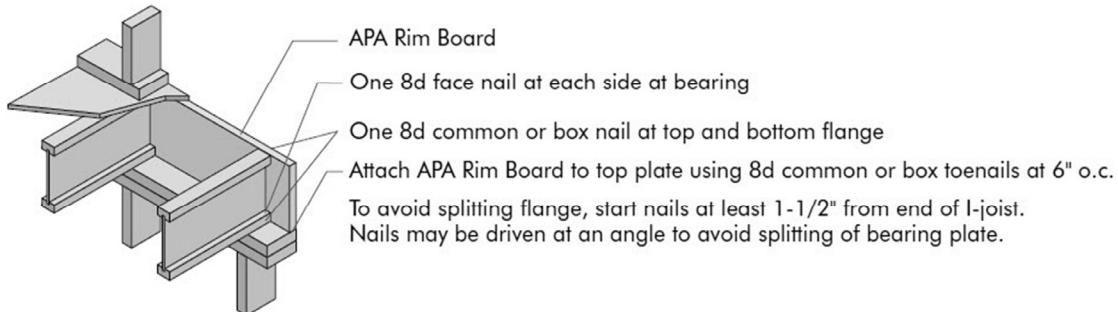



Table A, End Support: Minimum distance from edge of hole to inside face of nearest end support

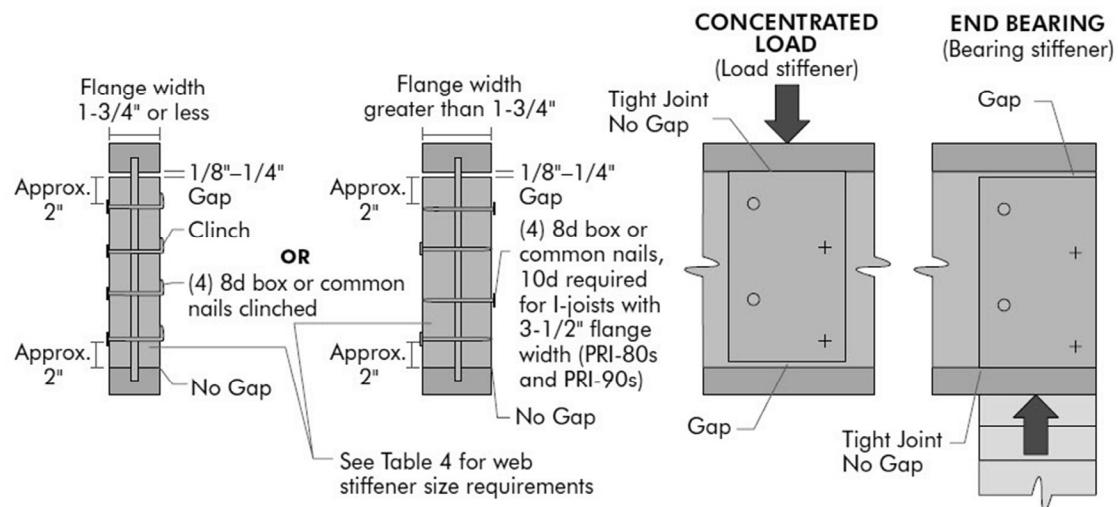
Depth	TJI®	● Round Hole Size										■ Square or Rectangular Hole Size							
		2"	3"	4"	5"	6½"	7"	8½"	11"	13"	2"	3"	4"	5"	6½"	7"	8½"	11"	13"
9½"	110	1'-0"	1'-6"	2'-0"	3'-0"	5'-0"					1'-0"	1'-6"	2'-6"	3'-6"	4'-6"				
	210	1'-0"	1'-6"	2'-6"	3'-0"	5'-6"					1'-0"	2'-0"	2'-6"	4'-0"	5'-0"				
	230	1'-6"	2'-0"	2'-6"	3'-6"	5'-6"					1'-0"	2'-0"	3'-0"	4'-6"	5'-0"				
11½"	110	1'-0"	1'-0"	1'-6"	2'-0"	2'-6"	3'-0"	5'-6"			1'-0"	1'-6"	2'-0"	2'-6"	4'-6"	5'-0"	6'-0"		
	210	1'-0"	1'-6"	2'-0"	2'-0"	3'-0"	3'-6"	6'-0"			1'-0"	1'-6"	2'-6"	3'-0"	5'-0"	5'-6"	6'-6"		
	230	1'-0"	1'-6"	2'-0"	2'-6"	3'-0"	3'-6"	6'-6"			1'-0"	2'-0"	2'-6"	3'-6"	5'-6"	5'-6"	7'-0"		
	360	1'-6"	2'-0"	3'-0"	3'-6"	4'-6"	5'-0"	7'-0"			1'-6"	2'-6"	3'-6"	4'-6"	6'-6"	6'-6"	7'-6"		
	560	1'-6"	2'-6"	3'-0"	4'-0"	5'-6"	6'-0"	8'-0"			2'-6"	3'-6"	4'-6"	5'-6"	7'-0"	7'-6"	8'-0"		
14"	110	1'-0"	1'-0"	1'-0"	1'-0"	1'-6"	2'-0"	3'-0"	5'-6"		1'-0"	1'-0"	1'-6"	2'-0"	3'-6"	4'-0"	6'-0"	8'-0"	
	210	1'-0"	1'-0"	1'-0"	1'-6"	2'-0"	2'-6"	3'-6"	6'-0"		1'-0"	1'-0"	2'-0"	2'-6"	4'-0"	4'-6"	6'-6"	8'-6"	
	230	1'-0"	1'-0"	1'-0"	1'-6"	2'-6"	2'-6"	4'-0"	7'-0"		1'-0"	1'-0"	2'-0"	3'-0"	4'-0"	5'-0"	7'-0"	9'-0"	
	360	1'-0"	1'-0"	1'-6"	2'-6"	3'-6"	4'-0"	5'-6"	8'-0"		1'-0"	1'-6"	2'-6"	4'-0"	6'-0"	6'-6"	8'-0"	9'-6"	
	560	1'-0"	1'-0"	2'-0"	3'-0"	4'-6"	5'-0"	6'-6"	9'-0"		1'-6"	3'-0"	4'-0"	5'-0"	7'-0"	7'-6"	9'-0"	10'-0"	
16"	110	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-6"	3'-0"	3'-0"	5'-6"	7'-6"	10'-0"	
	210	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	2'-0"	3'-6"	6'-6"	8'-0"	11'-0"		
	230	1'-0"	1'-0"	1'-0"	1'-0"	1'-0"	1'-6"	1'-6"	3'-0"	4'-0"	1'-0"	1'-0"	2'-0"	3'-6"	4'-0"	7'-0"	9'-0"	11'-0"	
	360	1'-0"	1'-0"	1'-0"	1'-0"	2'-6"	2'-6"	4'-6"	6'-6"	9'-0"	1'-0"	1'-0"	1'-6"	3'-0"	5'-0"	5'-6"	9'-0"	10'-0"	11'-6"
	560	1'-0"	1'-0"	1'-0"	1'-0"	2'-6"	3'-0"	5'-0"	7'-6"	10'-0"	1'-0"	2'-0"	3'-0"	4'-6"	6'-6"	7'-0"	10'-0"	11'-0"	12'-0"

Weyerhaeuser – Trus Joist - TJI



APA – Z725 I-Joist – rim board

Blocking Panel or Rim Joist	Uniform Vertical Load Transfer Capacity ^a (plf)
1-1/8" APA Rim Board Plus, B2 or better ^b	4850
1-1/8" APA Rim Board, C1 or better ^b	4400
1" APA Rim Board, C2 or better ^b	3300


a. The uniform vertical load capacity is limited to a Rim Board depth of 16 inches or less and shall not be increased for any load duration shorter than the normal (10-yr) load duration. It shall not be used in the design of a bending member, such as joist, header, or rafter. For concentrated vertical load transfer capacity, see 1d.

b. See ANSI/APA PRR 410, *Standard for Performance-Rated Engineered Wood Rim Boards*, Form PRR-410.

APA – Z725 I-Joist – web stiffeners

WEB STIFFENER INSTALLATION DETAILS

Weyerhaeuser – Trus Joist – TJI - properties

Design Properties (100% Load Duration)

Depth	TJI®	Basic Properties				Reaction Properties			
		Joist Weight (lbs/ft)	Maximum Resistive Moment ⁽¹⁾ (ft-lbs)	Joist Only EI x 10 ⁶ (in. ² -lbs)	Maximum Vertical Shear (lbs)	1 1/4" End Reaction (lbs)	3 1/2" End Reaction (lbs)	3 1/2" Intermediate Reaction (lbs)	5 1/4" Intermediate Reaction (lbs)
9 1/2"	110	2.3	2,500	157	1,220	910	1,220	1,935	N.A.
	210	2.6	3,000	186	1,330	1,005	1,330	2,145	N.A.
	230	2.7	3,330	206	1,330	1,060	1,330	2,410	N.A.
11 7/8"	110	2.5	3,160	267	1,560	910	1,375	1,935	2,295
	210	2.8	3,795	315	1,655	1,005	1,460	2,145	2,505
	230	3.0	4,215	347	1,655	1,060	1,485	2,410	2,765
	360	3.0	6,180	419	1,705	1,080	1,505	2,460	2,815
	560	4.0	9,500	636	2,050	1,265	1,725	3,000	3,475
14"	110	2.8	3,740	392	1,860	910	1,375	1,935	2,295
	210	3.1	4,490	462	1,945	1,005	1,460	2,145	2,505
	230	3.3	4,990	509	1,945	1,060	1,485	2,410	2,765
	360	3.3	7,335	612	1,955	1,080	1,505	2,460	2,815
	560	4.2	11,275	926	2,390	1,265	1,725	3,000	3,475
16"	110	3.0	4,280	535	2,145	910	1,375	1,935	2,295
	210	3.3	5,140	629	2,190	1,005	1,460	2,145	2,505
	230	3.5	5,710	691	2,190	1,060	1,485	2,410	2,765
	360	3.5	8,405	830	2,190	1,080	1,505	2,460	2,815
	560	4.5	12,925	1,252	2,710	1,265	1,725	3,000	3,475

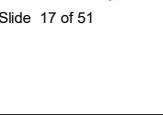
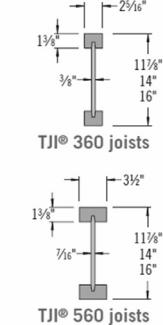
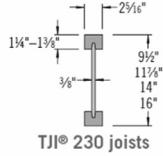
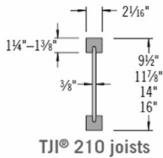
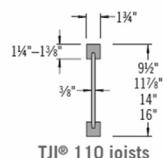
(1) Caution: Do not increase joist moment design properties by a repetitive member use factor.

(2) See detail W on page 27 for web stiffener requirements and nailing information.

- Tables are based on:
 - Uniform loads.
 - More restrictive of simple or continuous span.
 - Clear distance between supports
 - Minimum bearing length of 1 1/4" end (no web stiffeners) and 3 1/2" intermediate.
- Assumed composite action with a single layer of 24" on-center span-rated, glue-nailed floor panels for deflection only. When subfloor adhesive is not applied, spans shall be reduced 6" for nails and 12" for proprietary fasteners.

University of Michigan, TCAUP

Wood






For TJI® 110, 210, 230, and 360 Joists

$$\Delta = \frac{22.5 wL^4}{EI} + \frac{2.67 wL^2}{d \times 10^5}$$

For TJI® 560 Joists

$$\Delta = \frac{22.5 wL^4}{EI} + \frac{2.29 wL^2}{d \times 10^5}$$

w = uniform load in pounds per linear foot
L = span in feet
d = out-to-out depth of the joist in inches
EI = value from table above

Slide 17 of 51

Weyerhaeuser – Trus Joist – TJI – span table

L/360 Live Load Deflection (Minimum Criteria per Code)

Depth	TJI®	40 PSF Live Load / 10 PSF Dead Load				40 PSF Live Load / 20 PSF Dead Load			
		12" o.c.	16" o.c.	19.2" o.c.	24" o.c.	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
9 1/2"	110	18'-9"	17'-2"	15'-8"	14'-0"	18'-1"	15'-8"	14'-3"	12'-9"
	210	19'-8"	18'-0"	17'-0"	15'-4"	19'-8"	17'-2"	15'-8"	14'-0"
	230	20'-3"	18'-6"	17'-5"	16'-2"	20'-3"	18'-1"	16'-6"	14'-9"
11 7/8"	110	22'-3"	19'-4"	17'-8"	15'-9" ⁽¹⁾	20'-5"	17'-8"	16'-1" ⁽¹⁾	14'-4" ⁽¹⁾
	210	23'-4"	21'-2"	19'-4"	17'-3" ⁽¹⁾	22'-4"	19'-4"	17'-8"	15'-9" ⁽¹⁾
	230	24'-0"	21'-11"	20'-5"	18'-3"	23'-7"	20'-5"	18'-7"	16'-7" ⁽¹⁾
	360	25'-4"	23'-2"	21'-10"	20'-4" ⁽¹⁾	25'-4"	23'-2"	21'-10" ⁽¹⁾	17'-10" ⁽¹⁾
	560	28'-10"	26'-3"	24'-9"	23'-0"	28'-10"	26'-3"	24'-9"	20'-11" ⁽¹⁾
14"	110	24'-4"	21'-0"	19'-2"	17'-2" ⁽¹⁾	22'-2"	19'-2"	17'-6" ⁽¹⁾	15'-0" ⁽¹⁾
	210	26'-6"	23'-1"	21'-1"	18'-10" ⁽¹⁾	24'-4"	21'-1"	19'-2" ⁽¹⁾	16'-7" ⁽¹⁾
	230	27'-3"	24'-4"	22'-2"	19'-10" ⁽¹⁾	25'-8"	22'-2"	20'-3" ⁽¹⁾	17'-6" ⁽¹⁾
	360	28'-9"	26'-3"	24'-9" ⁽¹⁾	21'-5" ⁽¹⁾	28'-9"	26'-3" ⁽¹⁾	22'-4" ⁽¹⁾	17'-10" ⁽¹⁾
	560	32'-8"	29'-9"	28'-0"	25'-2" ⁽¹⁾	32'-8"	29'-9"	26'-3" ⁽¹⁾	20'-11" ⁽¹⁾
16"	110	26'-0"	22'-6"	20'-7" ⁽¹⁾	18'-1" ⁽¹⁾	23'-9"	20'-7" ⁽¹⁾	18'-9" ⁽¹⁾	15'-0" ⁽¹⁾
	210	28'-6"	24'-8"	22'-6" ⁽¹⁾	19'-11" ⁽¹⁾	26'-0"	22'-6" ⁽¹⁾	20'-7" ⁽¹⁾	16'-7" ⁽¹⁾
	230	30'-1"	26'-0"	23'-9"	21'-1" ⁽¹⁾	27'-5"	23'-9"	21'-8" ⁽¹⁾	17'-6" ⁽¹⁾
	360	31'-10"	29'-0"	26'-10" ⁽¹⁾	21'-5" ⁽¹⁾	31'-10"	26'-10" ⁽¹⁾	22'-4" ⁽¹⁾	17'-10" ⁽¹⁾
	560	36'-1"	32'-11"	31'-0" ⁽¹⁾	25'-2" ⁽¹⁾	36'-1"	31'-6" ⁽¹⁾	26'-3" ⁽¹⁾	20'-11" ⁽¹⁾

(1) Web stiffeners are required at intermediate supports of continuous-span joists when the intermediate bearing length is **less** than 5 1/4" and the span on either side of the intermediate bearing is greater than the following spans:

Floor—100% (PLF)

Depth	TJI®	Joist Clear Span																	
		8'		10'		12'		14'		16'		18'		20'		22'		24'	
Live Load L/480	Total Load	Live Load L/480	Total Load	Live Load L/480	Total Load	Live Load L/480	Total Load	Live Load L/480	Total Load	Live Load L/480	Total Load	Live Load L/480	Total Load	Live Load L/480	Total Load	Live Load L/480	Total Load	Live Load L/480	Total Load
9½"	110	*	190	140	152	85	127	56	99	38	76								
	210	*	210	161	169	99	141	65	119	45	90								
	230	*	236	175	190	108	158	71	133	49	99								
11½"	110	*	190	*	152	*	127	92	109	63	95	45	76						
	210	*	210	*	169	*	141	106	121	74	106	53	92						
	230	*	236	*	190	*	158	116	136	80	119	58	102	43	83				
	360	*	241	*	193	*	162	136	139	95	121	69	108	51	97	39	78		
	560	*	294	*	236	*	197	*	169	138	148	101	132	76	119	58	108	45	91
14"	110	*	190	*	152	*	127	*	109	91	95	66	85						
	210	*	210	*	169	*	141	*	121	*	106	76	94	57	85				
	230	*	236	*	190	*	158	*	136	115	119	83	106	62	95	47	81		
	360	*	241	*	193	*	162	*	139	*	121	98	108	73	97	56	88	44	81
	560	*	294	*	236	*	197	*	169	*	148	*	132	107	119	83	108	65	99
16"	110	*	190	*	152	*	127	*	109	*	95	*	85	66	76				
	210	*	210	*	169	*	141	*	121	*	106	*	94	76	85	58	77		
	230	*	236	*	190	*	158	*	136	*	119	*	106	83	95	64	87	50	78
	360	*	241	*	193	*	162	*	139	*	121	*	108	*	97	75	88	59	81
	560	*	294	*	236	*	197	*	169	*	148	*	132	*	119	*	108	86	99

* Indicates that Total Load value controls.

How to Use This Table

- Calculate actual total and live load in pounds per linear foot (plf).
- Select appropriate Joist Clear Span.
- Scan down the column to find a TJI® joist that meets or exceeds actual total and live loads.

Refer to PSF to PLF Conversion table on page 31

General Notes

- Table is based on:
 - Minimum bearing length of 1¾" end and 3½" intermediate, without web stiffeners
 - Uniform loads.
 - More restrictive of simple or continuous span
 - No composite action provided by sheathing.
- Live Load is based on joist deflection of L/480.
- If a live load deflection limit of L/360 is desired, multiply value in Live Load column by 1.33. The resulting live load must not exceed the Total Load shown.
- Total Load values are limited to deflection of L/240.
- Table does not account for concentrated loads. Use Weyerhaeuser software when this condition applies.

University of Michigan, TCAUP

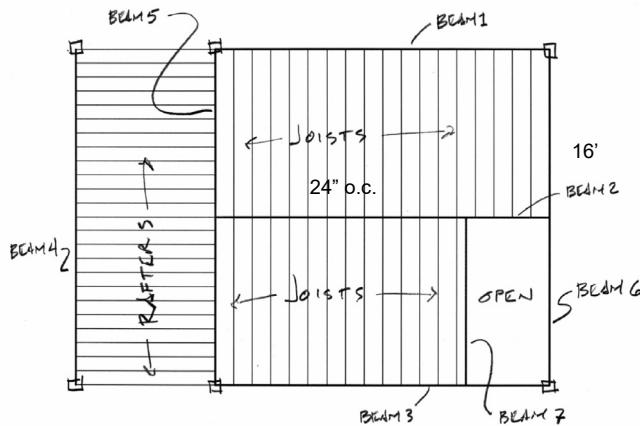
Wood

Slide 19 of 51

I-Joist Selection procedure

- Calculate actual load in PLF
- Pick deflection limit (e.g. L/480)
- Pick o.c. spacing
- From load table find a section to carry load with span
- or
- Calculate shear and moment
- Pick section from properties table
- Check deflection

University of Michigan, TCAUP


Wood

Slide 20 of 51

I-Joist Selection

Example – floor joists

Given: span = 16 ft.
o.c. = 24 in.
DL 10 psf LL 40 psf

1. Find floor load in PSF
2. Pick deflection limit (e.g. L/480)
3. Pick o.c. spacing – calculate PLF
4. From load table find a section to carry load with span

CONVERT LOAD TO PLF

$$\text{PSF} \times \frac{\text{o.c.}}{12}$$

$$10 \text{ PSF} \times \frac{24}{12} = 20 \text{ PLF DL}$$

$$40 \text{ PSF} \times \frac{24}{12} = \frac{80 \text{ PLF LL}}{100 \text{ PLF TOTAL}}$$

University of Michigan, TCAUP

Wood

Slide 21 of 51

Weyerhaeuser – Trus Joist - TJI

9½"-16" JOISTS		FLOOR LOAD TABLE																	
Depth	TJI®	Joist Clear Span																	
		8'		10'		12'		14'		16'		18'		20'		22'		24'	
9½"	110	*	190	140	152	85	127	56	99	38	76								
	210	*	210	161	169	99	141	65	119	45	90								
	230	*	236	175	190	108	158	71	133	49	99								
11½"	110	*	190	*	152	*	127	92	109	63	95	45	76						
	210	*	210	*	169	*	141	106	121	74	106	53	92						
	230	*	236	*	190	*	158	116	136	80	119	58	102	43	83				
	360	*	241	*	193	*	162	136	139	95	121	69	108	51	97	39	78		
14"	560	*	294	*	236	*	197	*	169	138	148	101	132	76	119	58	108	45	91
	110	*	190	*	152	*	127	*	109	91	95	66	85						
	210	*	210	*	169	*	141	*	121	*	106	76	94	57	85				
	230	*	236	*	190	*	158	*	136	115	119	83	106	62	95	47	81		
16"	360	*	241	*	193	*	162	*	139	*	121	98	108	73	97	56	88	44	81
	560	*	294	*	236	*	197	*	169	*	148	*	132	107	119	83	108	65	99
	110	*	190	*	152	*	127	*	109	*	95	*	85	66	76				
	210	*	210	*	169	*	141	*	121	*	106	*	94	76	85	58	77		
18"	230	*	236	*	190	*	158	*	136	*	119	*	106	83	95	64	87	50	78
	360	*	241	*	193	*	162	*	139	*	121	*	108	*	97	75	88	59	81
	560	*	294	*	236	*	197	*	169	*	148	*	132	*	119	*	108	86	99

* Indicates that Total Load value controls.

How to Use This Table

1. Calculate actual total and live load in pounds per linear foot (plf).
2. Select appropriate Joist Clear Span.
3. Scan down the column to find a TJI® joist that meets or exceeds actual total and live loads.

Refer to PSF to PLF Conversion table on page 31

General Notes

- Table is based on:
 - Minimum bearing length of 1½" end and 3½" intermediate, without web stiffeners
 - Uniform loads.
 - More restrictive of simple or continuous span
 - No composite action provided by sheathing.
- Total Load values are limited to deflection of L/240.
- Live Load is based on joist deflection of L/480.
- If a live load deflection limit of L/360 is desired, multiply value in Live Load column by 1.33. The resulting live load must not exceed the Total Load shown.
- Table does not account for concentrated loads. Use Weyerhaeuser software when this condition applies.

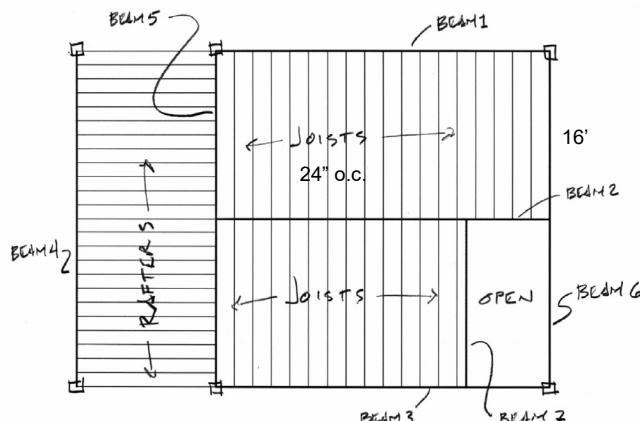
University of Michigan, TCAUP

Wood

Slide 22 of 51

Weyerhaeuser – Trus Joist - TJI

L/360 Live Load Deflection (Minimum Criteria per Code)


Depth	TJI®	40 PSF Live Load / 10 PSF Dead Load				40 PSF Live Load / 20 PSF Dead Load			
		12" o.c.	16" o.c.	19.2" o.c.	24" o.c.	12" o.c.	16" o.c.	19.2" o.c.	24" o.c.
9 1/2"	110	18'-9"	17'-2"	15'-8"	14'-0"	18'-1"	15'-8"	14'-3"	12'-9"
	210	19'-8"	18'-0"	17'-0"	15'-4"	19'-8"	17'-2"	15'-8"	14'-0"
	230	20'-3"	18'-6"	17'-5"	16'-2"	20'-3"	18'-1"	16'-6"	14'-9"
11 7/8"	110	22'-3"	19'-4"	17'-8"	15'-9" ⁽¹⁾	20'-5"	17'-8"	16'-1" ⁽¹⁾	14'-4" ⁽¹⁾
	210	23'-4"	21'-2"	19'-4"	17'-3" ⁽¹⁾	22'-4"	19'-4"	17'-8"	15'-9" ⁽¹⁾
	230	24'-0"	21'-11"	20'-5"	18'-3"	23'-7"	20'-5"	18'-7"	16'-7" ⁽¹⁾
	360	25'-4"	23'-2"	21'-10"	20'-4" ⁽¹⁾	25'-4"	23'-2"	21'-10" ⁽¹⁾	17'-10" ⁽¹⁾
	560	28'-10"	26'-3"	24'-9"	23'-0"	28'-10"	26'-3"	24'-9"	20'-11" ⁽¹⁾
14"	110	24'-4"	21'-0"	19'-2"	17'-2" ⁽¹⁾	22'-2"	19'-2"	17'-6" ⁽¹⁾	15'-0" ⁽¹⁾
	210	26'-6"	23'-1"	21'-1"	18'-10" ⁽¹⁾	24'-4"	21'-1"	19'-2" ⁽¹⁾	16'-7" ⁽¹⁾
	230	27'-3"	24'-4"	22'-2"	19'-10" ⁽¹⁾	25'-8"	22'-2"	20'-3" ⁽¹⁾	17'-6" ⁽¹⁾
	360	28'-9"	26'-3"	24'-9" ⁽¹⁾	21'-5" ⁽¹⁾	28'-9"	26'-3" ⁽¹⁾	22'-4" ⁽¹⁾	17'-10" ⁽¹⁾
	560	32'-8"	29'-9"	28'-0"	25'-2" ⁽¹⁾	32'-8"	29'-9"	26'-3" ⁽¹⁾	20'-11" ⁽¹⁾
16"	110	26'-0"	22'-6"	20'-7" ⁽¹⁾	18'-1" ⁽¹⁾	23'-9"	20'-7" ⁽¹⁾	18'-9" ⁽¹⁾	15'-0" ⁽¹⁾
	210	28'-6"	24'-8"	22'-6" ⁽¹⁾	19'-11" ⁽¹⁾	26'-0"	22'-6" ⁽¹⁾	20'-7" ⁽¹⁾	16'-7" ⁽¹⁾
	230	30'-1"	26'-0"	23'-9"	21'-1" ⁽¹⁾	27'-5"	23'-9"	21'-8" ⁽¹⁾	17'-6" ⁽¹⁾
	360	31'-10"	29'-0"	26'-10" ⁽¹⁾	21'-5" ⁽¹⁾	31'-10"	26'-10" ⁽¹⁾	22'-4" ⁽¹⁾	17'-10" ⁽¹⁾
	560	36'-1"	32'-11"	31'-0" ⁽¹⁾	25'-2" ⁽¹⁾	36'-1"	31'-6" ⁽¹⁾	26'-3" ⁽¹⁾	20'-11" ⁽¹⁾

(1) Web stiffeners are required at intermediate supports of continuous-span joists when the intermediate bearing length is **less** than 5 1/4" and the span on either side of the intermediate bearing is greater than the following spans:

I-Joist Selection

Example – floor joists

Given: span = 16 ft.
o.c. = 24 in.
DL 10 psf LL 40 psf

1. Calculate actual load in PLF
2. Pick deflection limit (e.g. L/360)
3. Pick o.c. spacing
4. Calculate shear and moment
5. Pick section from properties table
6. Calculate deflection

$$M_f = \frac{w l^2}{8} = \frac{100 \text{ PLF} (16')^2}{8} = 3200 \text{ ft-k}$$

$$V_{max} = \frac{w l}{2} = \frac{100 (16)}{2} = 800 \text{ ft-lb}$$

Weyerhaeuser – Trus Joist - TJI

Design Properties (100% Load Duration)

Depth	TJI®	Basic Properties				Reaction Properties			
		Joist Weight (lbs/ft)	Maximum Resistive Moment ⁽¹⁾ (ft-lbs)	Joist Only EI x 10 ⁸ (in. ² -lbs)	Maximum Vertical Shear (lbs)	1 1/4" End Reaction (lbs)	3 1/2" End Reaction (lbs)	3 1/2" Intermediate Reaction (lbs)	5 1/4" Intermediate Reaction (lbs)
9 1/2"	110	2.3	2,500	157	1,220	910	1,220	1,935	N.A.
	210	2.6	3,000	186	1,330	1,005	1,330	2,145	N.A.
	230	2.7	3,330	206	1,330	1,060	1,330	2,410	N.A.
11 1/8"	110	2.5	3,160	267	1,560	910	1,375	1,935	2,295
	210	2.8	3,795	315	1,655	1,005	1,460	2,145	2,505
	230	3.0	4,215	347	1,655	1,060	1,485	2,410	2,765
	360	3.0	6,180	419	1,705	1,080	1,505	2,460	2,815
	560	4.0	9,500	636	2,050	1,265	1,725	3,000	3,475
14"	110	2.8	3,740	392	1,860	910	1,375	1,935	2,295
	210	3.1	4,490	462	1,945	1,005	1,460	2,145	2,505
	230	3.3	4,990	509	1,945	1,060	1,485	2,410	2,765
	360	3.3	7,335	612	1,955	1,080	1,505	2,460	2,815
	560	4.2	11,275	926	2,390	1,265	1,725	3,000	3,475
16"	110	3.0	4,280	535	2,145	910	1,375	1,935	2,295
	210	3.3	5,140	629	2,190	1,005	1,460	2,145	2,505
	230	3.5	5,710	691	2,190	1,060	1,485	2,410	2,765
	360	3.5	8,405	830	2,190	1,080	1,505	2,460	2,815
	560	4.5	12,925	1,252	2,710	1,265	1,725	3,000	3,475

(1) Caution: Do not increase joist moment design properties by a repetitive member use factor.

(2) See detail W on page 27 for web stiffener requirements and nailing information.

- Tables are based on:
 - Uniform loads.
 - More restrictive of simple or continuous span.
 - Clear distance between supports
 - Minimum bearing length of 1 1/4" end (no web stiffeners) and 3 1/2" intermediate.
- Assumed composite action with a single layer of 24" on-center span-rated, glue-nailed floor panels for deflection only. When subfloor adhesive is not applied, spans shall be reduced 6" for nails and 12" for proprietary fasteners.

University of Michigan, TCAUP

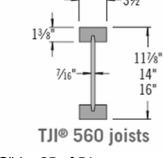
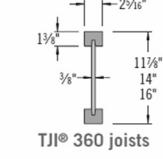
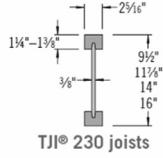
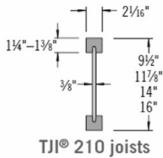
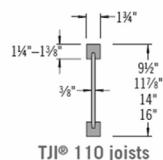
Wood

- For continuous spans, ratio of short span to long span should be 0.4 or greater to prevent uplift.
- Spans generated from Weyerhaeuser software may exceed the spans shown in these tables because software reflects actual design conditions.
- For multi-family applications and other loading conditions not shown, refer to Weyerhaeuser software or to the load table on page 8.

For TJI® 110, 210, 230, and 360 Joists

$$\Delta = \frac{22.5 wL^4}{EI} + \frac{2.67 wL^2}{d \times 10^5}$$

For TJI® 560 Joists






$$\Delta = \frac{22.5 wL^4}{EI} + \frac{2.29 wL^2}{d \times 10^5}$$

w = uniform load in pounds per linear foot

L = span in feet

d = out-to-out depth of the joist in inches

EI = value from table above

Slide 25 of 51

Weyerhaeuser – Trus Joist - TJI

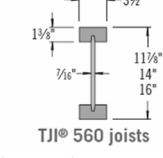
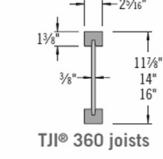
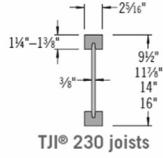
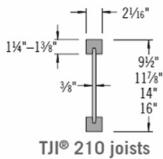
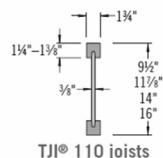
- Tables are based on:
 - Uniform loads.
 - More restrictive of simple or continuous span.
 - Clear distance between supports
 - Minimum bearing length of 1 1/4" end (no web stiffeners) and 3 1/2" intermediate.
- Assumed composite action with a single layer of 24" on-center span-rated, glue-nailed floor panels for deflection only. When subfloor adhesive is not applied, spans shall be reduced 6" for nails and 12" for proprietary fasteners.

- For continuous spans, ratio of short span to long span should be 0.4 or greater to prevent uplift.
- Spans generated from Weyerhaeuser software may exceed the spans shown in these tables because software reflects actual design conditions.
- For multi-family applications and other loading conditions not shown, refer to Weyerhaeuser software or to the load table on page 8.

For TJI® 110, 210, 230, and 360 Joists

$$\Delta = \frac{22.5 wL^4}{EI} + \frac{2.67 wL^2}{d \times 10^5}$$

For TJI® 560 Joists






$$\Delta = \frac{22.5 wL^4}{EI} + \frac{2.29 wL^2}{d \times 10^5}$$

w = uniform load in pounds per linear foot

L = span in feet

d = out-to-out depth of the joist in inches

EI = value from table above

9.5" TJI 230 (without composite flooring)

$$\Delta_{LL} = \frac{22.5 (80 \text{ plf})(16)}{206,000,000} + \frac{2.67 (80 \text{ plf}) 16^2}{9.5" 10,000,000} =$$

$$0.5726" + 0.0058" = 0.578"$$

$$\frac{\lambda}{360} = \frac{16(12)}{360} = 0.53"$$

University of Michigan, TCAUP

Wood

Slide 26 of 51

NDS – Chap. 8

8.1.2 Definitions

LVL 8.1.2.1 The term "laminated veneer lumber" refers to a composite of wood veneer sheet elements with wood fiber primarily oriented along the length of the member. Veneer thickness shall not exceed 0.25".

PSL 8.1.2.2 The term "parallel strand lumber" refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed 0.25" and the average length shall be a minimum of 150 times the least dimension.

LSL 8.1.2.3 The term "laminated strand lumber", refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed 0.10" and the average length shall be a minimum of 150 times the least dimension.

OSL 8.1.2.4 The term "oriented strand lumber", refers to a composite of wood strand elements with wood fibers primarily oriented along the length of the member. The least dimension of the strands shall not exceed 0.10" and the average length shall be a minimum of 75 times the least dimension.

8.1.2.5 The term "structural composite lumber" refers to either laminated veneer lumber, parallel strand lumber, laminated strand lumber, or oriented strand lumber. These materials are structural members bonded with an exterior adhesive.

University of Michigan, TCAUP

NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION

51

STRUCTURAL COMPOSITE LUMBER

8

8.1 General 52
8.2 Reference Design Values 52
8.3 Adjustment of Reference Design Values 52
8.4 Special Design Considerations 54

Table 8.3.1 Applicability of Adjustment Factors for Structural Composite Lumber..... 53

Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized.
AMERICAN WOOD COUNCIL

Wood

Slide 27 of 51

NDS – Chap. 8

Table 8.3.1 Applicability of Adjustment Factors for Structural Composite Lumber

ASD only	Load Duration Factor	ASD and LRFD							LRFD only			
		Wet Service Factor	Temperature Factor	Beam Stability Factor	Volume Factor	Repetitive Member Factor	Column Stability Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor	
F _b ' = F _b	x	C _D	C _M	C _t	C _L ¹	C _V ¹	C _r	-	-	2.54	0.85	λ
F _t ' = F _t	x	C _D	C _M	C _t	-	C _V	-	-	-	2.70	0.80	λ
F _v ' = F _v	x	C _D	C _M	C _t	-	-	-	-	-	2.88	0.75	λ
F _c ' = F _c	x	C _D	C _M	C _t	-	-	-	C _p	-	2.40	0.90	λ
F _{c⊥} ' = F _{c⊥}	x	-	C _M	C _t	-	-	-	-	C _b	1.67	0.90	-
E' = E	x	-	C _M	C _t	-	-	-	-	-	-	-	-
E _{min} ' = E _{min}	x	-	C _M	C _t	-	-	-	-	-	1.76	0.85	-

1. See 8.3.6.1 for information on simultaneous application of the volume factor, C_V, and the beam stability factor, C_L, to the reference bending design value, F_b.

8.3.2 Load Duration Factor, C_D (ASD Only)

All reference design values except modulus of elasticity, E, modulus of elasticity for beam and column stability, E_{min}, and compression perpendicular to grain, F_{c⊥}, shall be multiplied by load duration factors, C_D, as specified in 2.3.2.

8.3.3 Wet Service Factor, C_M

Reference design values for structural composite lumber are applicable to dry service conditions as specified in 8.1.4 where C_M = 1.0. When the service conditions differ from the specified conditions, adjustments for high moisture shall be in accordance with information provided by the structural composite lumber manufacturer.

8.3.4 Temperature Factor, C_t

When structural members will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C), reference design values shall be multiplied by the temperature factors, C_t, specified in 2.3.3.

8.3.5 Beam Stability Factor, C_L

Structural composite lumber bending members shall be laterally supported in accordance with 3.3.3.

8.3.6 Volume Factor, C_V

8.3.6.1 Reference bending design values, F_b, for structural composite lumber shall be multiplied by the volume factor, C_V, which shall be obtained from the structural composite lumber manufacturer's literature

University of Michigan, TCAUP

Wood

Slide 28 of 51

APA – from E30

Engineered Wood CONSTRUCTION GUIDE

Structural Composite Lumber Selection and Specification

AN EXCERPT OF THE ENGINEERED WOOD CONSTRUCTION GUIDE

University of Michigan, TCAUP

Wood

Slide 29 of 51

Manufactures – e.g. Weyerhaeuser

BEAMS, HEADERS, AND COLUMNS

Featuring Trus Joist® TimberStrand® LSL,
Microlam® LVL, and Parallam® PSL

- Uniform and Predictable
- Minimal Bowing, Twisting, and Shrinking
- Strong and Straight
- Limited Product Warranty

PARALLAM® PLUS PSL BEAMS, HEADERS AND COLUMNS

Featuring Trus Joist® Parallam® PSL
with Preservative Protection

- Columns and posts are ideal for ground and fresh water contact and saltwater splash applications
- Beams and headers are ideal for exterior, aboveground use
- Protects against termites and decay-causing fungi
- Treated throughout the cross section
- Kiln dried after treatment
- 30-year limited warranties

University of Michigan, TCAUP

Wood

Slide 30 of 51

Structural Composite Lumber

LVL

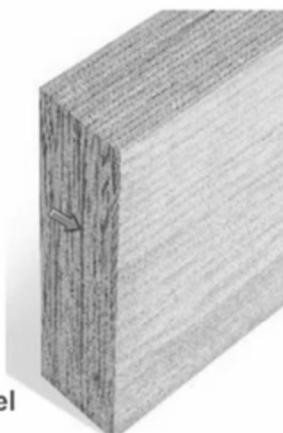
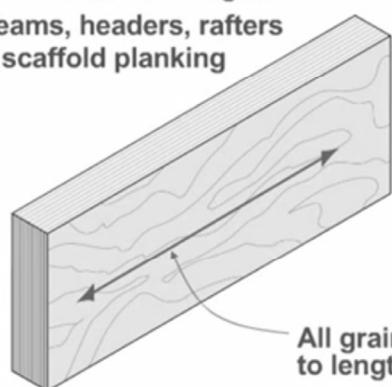
Structural Composite Lumber (SCL):

PSL

- The wood grain of veneers or strands is primarily oriented in the same direction.
- Out performs when either face- or edge-loaded.
- Sawn to consistent sizes.

LSL

- Strength Properties published on a proprietary basis by manufacturers of SCL and recognized in evaluation reports.



OSL

Laminated Veneer Lumber - LVL

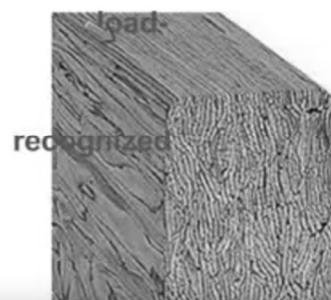
▪ Laminated Veneer Lumber (LVL)

- Veneers bonded together
- Beams, headers, rafters & scaffold planking

LVL construction

University of Michigan, TCAUP

Wood



Slide 33 of 51

Parallel Strand Lumber - PSL

Parallel Strand Lumber (PSL):

- Manufactured from veneers clipped into long strands in a parallel formation and bonded together
- Strand length-to-thickness ratio is around 300
- Common uses: headers, beams, bearing columns
- Published on a proprietary basis by the manufacturer and in evaluation reports.

University of Michigan, TCAUP

Wood

Slide 34 of 51

Parallel Strand Lumber - PSL

University of Michigan, TCAUP

Wood

Slide 35 of 51

Laminated Strand Lumber – LSL Oriented Strand Lumber - OSL

Laminated Strand Lumber (LSL):

- Flaked strand length-to-thickness ratio is around 150
- Common uses: studs

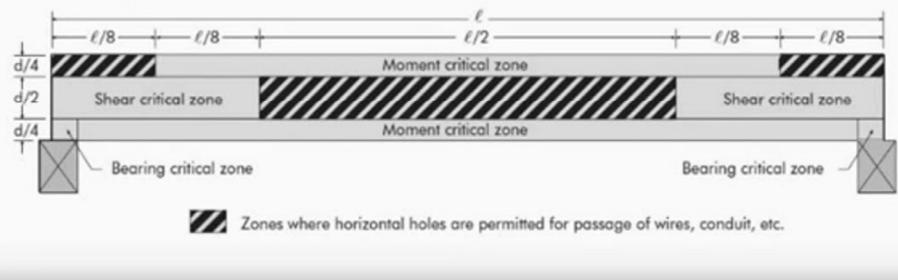
Oriented Strand Lumber (OSL):

- Flaked strand length-to-thickness ratio is around 75
- Common uses: studs

University of Michigan, TCAUP

Wood

Slide 36 of 51


Structural Composite Lumber

Field Notching and Drilling of Glulam (Form S560)

Horizontal Hole Drilling

FIGURE 3

ZONES WHERE SMALL HORIZONTAL HOLES ARE PERMITTED IN A UNIFORMLY LOADED, SIMPLY SUPPORTED BEAM

Weyerhaeuser – Trus Joist LSL – LVL – PSL

This guide features Trus Joist® engineered lumber in the following widths and depths:

TimberStrand® LSL

1.55E TimberStrand® LSL sizes:

Widths: 1 1/4" and 3 1/2"

Depths: 9 1/2", 11 7/8", 14", and 16"

1.3E TimberStrand® LSL header sizes:

Width: 3 1/2"

Depths: 4 3/8", 5 1/2", and 7 1/4"

1.3E TimberStrand® LSL column and post sizes:

3 1/2" x 3 1/2" 3 1/2" x 4 3/8" 3 1/2" x 5 1/2" 3 1/2" x 7 1/4"

Microllam® LVL

2.0E Microllam® LVL header and beam sizes:

Width: 1 1/4"

Depths: 5 1/2", 7 1/4", 9 1/4", 9 1/2", 11 1/4", 11 7/8", 14", 16", 18", and 20"

Parallam® PSL

2.0E Parallam® PSL header and beam sizes:

Widths: 3 1/2", 5 1/4", and 7"

Depths: 9 1/4", 9 1/2", 11 1/4", 11 7/8", 14", 16", and 18"

1.8E Parallam® PSL column and post sizes:

3 1/2" x 3 1/2" 3 1/2" x 5 1/4" 3 1/2" x 7" 5 1/4" x 5 1/4" 5 1/4" x 7" 7" x 7"

For deeper depth Parallam® PSL beams, see the Trus Joist® 2.2E Parallam® PSL Deep Beam guide, TJ-7001, or contact your Weyerhaeuser representative.

DESIGN PROPERTIES

Allowable Design Properties⁽¹⁾ (100% Load Duration)

Grade	Width	Design Property	Depth										
			4 3/8"	5 1/2"	5 1/2" Plank Orientation	7 1/4"	9 1/4"	9 1/2"	11 1/4"	11 1/8"	14"	16"	18"
TimberStrand® LSL													
1.3E	3 1/2"	Moment (ft-lbs)	1,735	2,685	1,780	4,550							
		Shear (lbs)	4,340	5,455	1,925	7,190							
		Moment of Inertia (in. ⁴)	24	49	20	111							
		Weight (plf)	4.5	5.6	5.6	7.4							
1.55E	1 3/4"	Moment (ft-lbs)					5,210		7,975	10,920	14,090		
		Shear (lbs)					3,435		4,295	5,065	5,785		
		Moment of Inertia (in. ⁴)					125		244	400	597		
	3 1/2"	Weight (plf)					5.2		6.5	7.7	8.8		
		Moment (ft-lbs)					10,420		15,955	21,840	28,180		
		Shear (lbs)					6,870		8,590	10,125	11,575		
2.0E	1 3/4"	Moment of Inertia (in. ⁴)					250		488	800	1,195		
		Weight (plf)					10.4		13	15.3	17.5		
		Microllam® LVL											
		Moment (ft-lbs)	2,125		3,555	5,600	5,885	8,070	8,925	12,130	15,555	19,375	23,580
2.0E	5 1/4"	Shear (lbs)	1,830		2,410	3,075	3,160	3,740	3,950	4,655	5,320	5,985	6,650
		Moment of Inertia (in. ⁴)	24		56	115	125	208	244	400	597	851	1,167
		Weight (plf)	2.8		3.7	4.7	4.8	5.7	6.1	7.1	8.2	9.2	10.2
		Parallam® PSL											
2.0E	3 1/2"	Moment (ft-lbs)					12,415	13,055	17,970	19,900	27,160	34,955	43,665
		Shear (lbs)					6,260	6,430	7,615	8,035	9,475	10,825	12,180
		Moment of Inertia (in. ⁴)					231	250	415	488	800	1,195	1,701
		Weight (plf)					10.1	10.4	12.3	13.0	15.3	17.5	19.7
	7"	Moment (ft-lbs)					18,625	19,585	26,955	29,855	40,740	52,430	65,495
		Shear (lbs)					9,390	9,645	11,420	12,055	14,210	16,240	18,270
		Moment of Inertia (in. ⁴)					346	375	623	733	1,201	1,792	2,552
		Weight (plf)					15.2	15.6	18.5	19.5	23.0	26.3	29.5

(1) For product in beam orientation, unless otherwise noted.

Weyerhaeuser – Trus Joist – LSL – LVL – PSL

DESIGN PROPERTIES

Design Stresses⁽¹⁾ (100% Load Duration)

Grade	Orientation	G Shear Modulus of Elasticity (psi)	E Modulus of Elasticity (psi)	E _{min} Adjusted Modulus of Elasticity ⁽²⁾ (psi)	F _b Flexural Stress ⁽³⁾ (psi)	F _t Tension Stress ⁽⁴⁾ (psi)	F _{c⊥} Compression Perpendicular to Grain ⁽⁵⁾ (psi)	F _c Compression Parallel to Grain (psi)	F _v Horizontal Shear Parallel to Grain (psi)	SG Equivalent Specific Gravity ⁽⁶⁾
TimberStrand® LSL										
1.3E	Beam/Column	81,250	1.3 x 10 ⁶	660,750	1,700	1,075	710	1,835	425	0.50 ⁽⁷⁾
	Plank	81,250	1.3 x 10 ⁶	660,750	1,900 ⁽⁸⁾	1,075	635 ⁽⁹⁾	1,835	150	0.50 ⁽⁷⁾
Microllam® LVL										
2.0E	Beam	125,000	2.0 x 10 ⁶	1,016,535	2,600	1,555	750	2,510	285	0.50
Parallam® PSL										
1.8E	Column	112,500	1.8 x 10 ⁶	914,880	2,400 ⁽¹¹⁾	1,755	545 ⁽¹¹⁾	2,500	190 ⁽¹¹⁾	0.50
2.0E	Beam	125,000	2.0 x 10 ⁶	1,016,535	2,900	2,025	625 ⁽¹²⁾	2,900 ⁽¹³⁾	290	0.50

(1) Unless otherwise noted, adjustment to the design stresses for duration of load are permitted in accordance with the applicable code.

(2) Reference modulus of elasticity for beam and column stability calculations, per NDS®.

(3) For 12" depth. For other depths, multiply F_b by the appropriate factor as follows:– For TimberStrand® LSL, multiply by $\left[\frac{12}{d}\right]^{0.092}$ – For Microllam® LVL, multiply by $\left[\frac{12}{d}\right]^{0.136}$ – For Parallam® PSL, multiply by $\left[\frac{12}{d}\right]^{0.111}$ (4) F_t has been adjusted to reflect the volume effects for most standard applications.(5) F_{c⊥} may not be increased for duration of load.

(6) For lateral connection design only.

(7) Specific gravity of 0.58 may be used for bolts installed perpendicular to face and loaded perpendicular to grain.

(8) Values are for thickness up to 3 1/2".

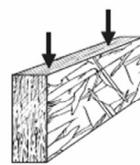
(9) For members less than 1 3/4" thick and in plank orientation, use F_{c⊥} of 670 psi.(10) Value accounts for large hole capabilities. See **Allowable Holes** on page 26.

(11) Value shown is for plank orientation.

(12) Use 750 psi for Parallam® PSL identified with plant number 0579.

(13) For column applications, use F_{c||} of 500 psi. Alternatively, refer to ESR-1387, Table 1, footnote 15.

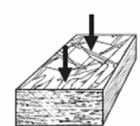
General Assumptions for Trus Joist® Beams


- Lateral support is required at bearing and along the span at 24" on-center, maximum.
- Bearing lengths are based on each product's bearing stress for applicable grade and orientation.
- All members 7 1/4" and less in depth are restricted to a maximum deflection of 5/16".
- Beams that are 1 3/4" x 16" and deeper require multiple plies. Some exceptions allowed when using Weyerhaeuser software.
- No camber.
- Beams and columns must remain straight to within 5 1/4" (in.) of true alignment. L is the unrestrained length of the member in feet.

For applications not covered in this brochure, contact your Weyerhaeuser representative.

See pages 28 and 29 for multiple-member beam connections.

**TimberStrand® LSL, Microllam® LVL, and
untreated Parallam® PSL are intended
for dry-use applications**


Beam Orientation

Column Orientation

Plank Orientation

Weyerhaeuser – Trus Joist – LVL – Load Capacity Table

2.0E Microllam® LVL: Roof—Non-Snow Load Area 125% (PLF)

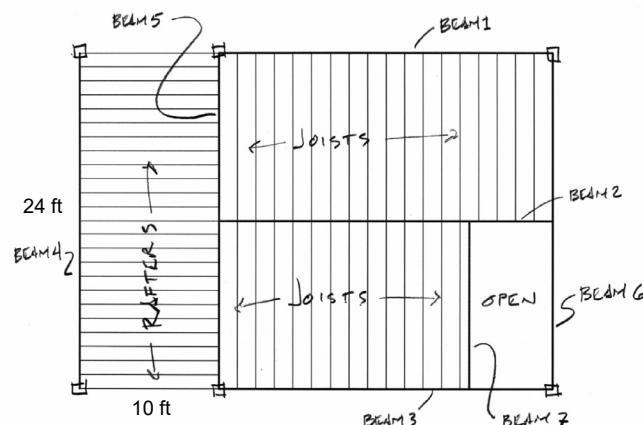
Span	Condition	1 1/4" Width								3 1/2" Width (2 ply)							
		5 1/2"	7 1/4"	9 1/4"	9 1/2"	11 1/4"	11 1/8"	14"	5 1/2"	7 1/4"	9 1/4"	9 1/2"	11 1/4"	11 1/8"			
6'	Total Load	474	954	1,285	1,329	1,656	1,781	1,961	948	1,908	2,571	2,659	3,313	3,563			
	Deflection L/240	458	*	*	*	*	*	*	916	*	*	*	*	*			
	Min. End/Int. Bearing (in.)	1.5/3.5	2.2/5.5	2.9/7.4	3.1/7.6	3.8/9.5	4.1/10.2	4.5/11.3	1.5/3.5	2.2/5.5	2.9/7.4	3.1/7.6	3.8/9.5	4.1/10.2			
8'	Total Load	153	342	870	915	1,145	1,224	1,469	307	685	1,741	1,830	2,290	2,449			
	Deflection L/240	*	*	*	*	*	*	*	*	*	*	*	*	*			
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	2.7/6.7	2.8/7	3.5/8.8	3.8/9.4	4.5/11.3	1.5/3.5	1.5/3.5	2.7/6.7	2.8/7	3.5/8.8	3.8/9.4			
9'-6"	Total Load	77	174	615	647	888	982	1,212	154	349	1,231	1,294	1,776	1,965			
	Deflection L/240	*	*	543	585	*	*	*	*	*	*	1,086	1,171	*	*		
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	2.2/5.6	2.4/5.9	3.2/8.1	3.6/8.9	4.4/11	1.5/3.5	1.5/3.5	2.2/5.6	2.4/5.9	3.2/8.1	3.6/8.9			
10'	Total Load	62	142	555	583	801	886	1,137	124	284	1,110	1,167	1,602	1,772			
	Deflection L/240	*	*	470	506	*	*	*	*	*	*	940	1,013	*	*		
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	2.1/5.3	2.2/5.6	3.1/7.7	3.4/8.5	4.4/10.9	1.5/3.5	1.5/3.5	2.1/5.3	2.2/5.6	3.1/7.7	3.4/8.5			
12'	Total Load	67	167	367	397	554	613	835	57	135	735	794	1,109	1,227			
	Deflection L/240	*	*	279	301	488	568	*	*	*	*	558	602	976	1,137		
	Min. End/Int. Bearing (in.)	1.5/3.5	1.7/4.3	1.8/4.6	2.6/6.4	2.8/7.1	3.9/9.6	4.5/13.5	1.5/3.5	1.7/4.3	1.8/4.6	2.6/6.4	2.8/7.1				
14'	Total Load	233	525	405	449	611	661	70	466	505	811	898					
	Deflection L/240	*	*	178	193	314	367	585	*	357	386	629	734				
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	2.2/5.5	2.4/6.1	3.3/8.3	3.5/10.3	4.5/13.5	1.5/3.5	1.5/3.5	2.2/5.5	2.4/6.1					
16'-6"	Total Load	142	154	255	299	438	488	585	285	309	510	598					
	Deflection L/240	*	*	110	119	195	228	367	220	238	391	457					
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.6/4.1	1.9/4.8	2.8/7	3.5/10.3	4.5/13.5	1.5/3.5	1.6/4.1	1.9/4.8						
18'-6"	Total Load	100	108	181	212	345	395	405	200	217	362	425					
	Deflection L/240	*	*	78	85	140	164	264	157	170	280	328					
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5					
20'	Total Load	78	85	143	168	274	308	357	157	171	286	336					
	Deflection L/240	*	*	62	67	111	130	211	125	135	223	261					
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	2.1/5.4	2.1/5.4	2.1/5.4	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5					
22'	Total Load	58	63	106	125	206	226	206	116	126	213	251					
	Deflection L/240	*	*	47	51	84	98	160	94	102	168	197					
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5					
24'	Total Load					81	95	158	87	95	162	191					
	Deflection L/240	*	*			65	76	124	73	79	130	153					
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.8	1.5/3.8	1.5/3.8	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5					
26'	Total Load					62	74	123	67	73	125	148					
	Deflection L/240	*	*			51	60	98	57	62	102	120					
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5					
28'	Total Load					58	98		52	56	98	117					
	Deflection L/240	*	*			48	78		46	50	82	97					
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5					
30'	Total Load					78			78								
	Deflection L/240	*	*			64			64								
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5					

LVL – PSL – LSL

Selection

1. Calculate total beam load
2. Choose beam span in chart
3. Find section to carry load

or


2. Calculate shear and moment
3. Use properties chart to find section
4. Include adjustment factors: C_D , C_V

LVL

Example – Beam 4

Given: span = 24 ft.
D 6 psf Lr 20 psf

1. Calculate total beam load
2. Choose beam span in chart
3. Find section to carry load

LOAD IN PLF

$$D + L_r = 6 + 20 = 26 \text{ PSF}$$

$$26 (5') = 130 \text{ PLF}$$

LVL

Example Beam 4

Span = 24 ft

Load = 130 plf

Lr = 100 plf

Pick 1 3/4" x 14"

2.0E Microllam® LVL: Roof—Non-Snow Load Area 125% (PLF)

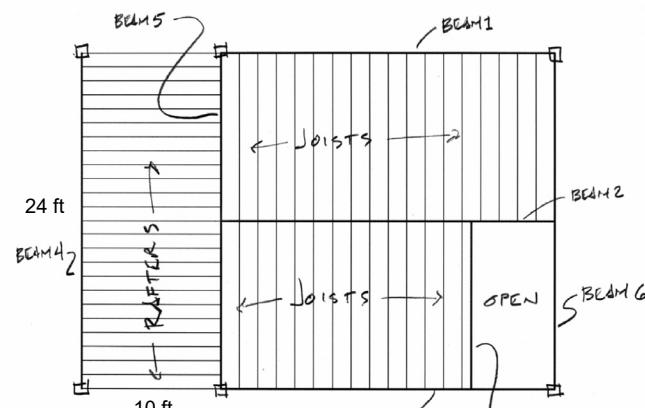
Span	Condition	1 1/4" Width						3 1/2" Width (2 ply)						
		5 1/2"	7 1/4"	9 1/4"	9 1/2"	11 1/4"	11 1/2"	14"	5 1/2"	7 1/4"	9 1/4"	9 1/2"	11 1/4"	11 1/2"
6'	Total Load	474	954	1,285	1,329	1,656	1,781	1,961	948	1,908	2,571	2,659	3,313	3,563
	Deflection L/240	458	*	*	*	*	*	*	*	*	*	*	*	*
	Min. End/Int. Bearing (in.)	1.5/3.5	2.2/5.5	2.9/7.4	3.1/7.6	3.8/9.5	4.1/10.2	4.5/11.3	1.5/3.5	1.5/3.5	2.7/6.7	2.8/7	3.5/8.8	3.8/9.4
8'	Total Load	153	342	870	915	1,145	1,224	1,469	307	685	1,741	1,830	2,290	2,449
	Deflection L/240	*	*	*	*	*	*	*	*	*	*	*	*	*
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	2.7/6.7	2.8/7	3.5/8.8	3.8/9.4	4.5/11.3	1.5/3.5	1.5/3.5	2.7/6.7	2.8/7	3.5/8.8	3.8/9.4
9'-6"	Total Load	77	174	615	647	888	982	1,212	154	349	1,231	1,294	1,776	1,965
	Deflection L/240	*	*	543	585	*	*	*	*	*	1,086	1,171	*	*
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	2.2/5.6	2.4/5.9	3.2/8.1	3.6/8.9	4.4/11	1.5/3.5	1.5/3.5	2.2/5.6	2.4/5.9	3.2/8.1	3.6/8.9
10'	Total Load	62	142	555	583	801	886	1,137	124	284	1,110	1,167	1,802	1,772
	Deflection L/240	*	*	470	506	*	*	*	*	*	940	1,013	*	*
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	2.1/5.3	2.2/5.6	3.1/7.7	3.4/8.5	4.4/10.9	1.5/3.5	1.5/3.5	2.1/5.3	2.2/5.6	3.1/7.7	3.4/8.5
12'	Total Load	67	167	367	397	554	613	835	57	135	735	794	1,109	1,227
	Deflection L/240	*	*	279	301	488	568	*	*	*	558	602	976	1,137
	Min. End/Int. Bearing (in.)	1.5/3.5	1.7/4.3	1.8/4.6	2.6/6.4	2.8/7.1	3.9/9.6	1.5/3.5	1.5/3.5	1.7/4.3	1.8/4.6	2.6/6.4	2.8/7.1	
14'	Total Load	233	252	405	449	611			70	466	505	811	898	
	Deflection L/240			178	193	314	367	585	*	357	386	629	734	
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	2.2/5.5	2.4/6.1	3.3/8.3			1.5/3.5	1.5/3.5	2.2/5.5	2.4/6.1		
16'-6"	Total Load	142	154	255	299	438				285	308	510	598	
	Deflection L/240			110	119	195	228	367		220	238	391	457	
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.6/4.1	1.9/4.8	2.8/7			1.5/3.5	1.5/3.5	1.6/4.1	1.9/4.8		
18'-6"	Total Load	100	108	181	212	345				200	217	362	425	
	Deflection L/240			78	85	140	164	264		157	170	280	328	
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.9	2.5/6.2			1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.9		
20'	Total Load	78	85	143	168	274				157	171	286	336	
	Deflection L/240			62	67	111	130	211		125	135	223	261	
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	2.1/5.4			1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5		
22'	Total Load	58	63	106	125	206				116	126	213	251	
	Deflection L/240			47	51	84	98	160		94	102	168	197	
	Min. End/Int. Bearing (in.)	1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5	1.8/4.5			1.5/3.5	1.5/3.5	1.5/3.5	1.5/3.5		
24'	Total Load					81	95	158		87	95	162	191	
	Deflection L/240					65	76	124		73	79	130	153	
	Min. End/Int. Bearing (in.)					1.5/3.5	1.5/3.5	1.5/3.8		1.5/3.5	1.5/3.5	1.5/3.5		
26'	Total Load					62	74	123		67	73	125	148	
	Deflection L/240					51	60	98		57	62	102	120	
	Min. End/Int. Bearing (in.)					1.5/3.5	1.5/3.5	1.5/3.5		1.5/3.5	1.5/3.5	1.5/3.5		
28'	Total Load					58	98			52	56	98	117	
	Deflection L/240						48	78		46	50	82	97	
	Min. End/Int. Bearing (in.)						1.5/3.5	1.5/3.5		1.5/3.5	1.5/3.5	1.5/3.5		
30'	Total Load							78				78	93	
	Deflection L/240							64				67	79	
	Min. End/Int. Bearing (in.)							1.5/3.5				1.5/3.5		

* Indicates Total Load value controls.

University of Michigan, TCAUP

Wood

Slide 45 of 51


LVL – PSL – LSL

Example – Beam 4

Given: span = 24 ft.

D 6 psf Lr 20 psf

130 plf

1. Calculate total beam load

2. Calculate shear and moment

3. Use properties chart to find section

4. Check stresses

5. Check deflection

$$M_{MAX} = \frac{w l^2}{8} = \frac{130(24)^2}{8} = 9360 \text{ in-lb}$$

$$V_{MAX} = \frac{w l}{2} = \frac{130(24)}{2} = 1560 \text{ lb}$$

University of Michigan, TCAUP

Wood

Slide 46 of 51

Weyerhaeuser – Trus Joist – LSL – LVL – PSL

DESIGN PROPERTIES

Moment:
9360 ft-lb

Shear:
1560 lbs

Allowable Design Properties⁽¹⁾ (100% Load Duration)

Grade	Width	Design Property	Depth										
			4 3/4"	5 1/2"	5 1/2" Plank Orientation	7 1/4"	9 1/4"	9 1/2"	11 1/4"	11 1/2"	14"	16"	18"
TimberStrand® LSL													
1.3E	3 1/2"	Moment (ft-lbs)	1,735	2,685	1,780	4,550							
		Shear (lbs)	4,340	5,455	1,925	7,190							
		Moment of Inertia (in. ⁴)	24	49	20	111							
		Weight (plf)	4.5	5.6	5.6	7.4							
1.55E	1 3/4"	Moment (ft-lbs)					5,210		7,975	10,920	14,090		
		Shear (lbs)					3,435		4,295	5,065	5,785		
		Moment of Inertia (in. ⁴)					125		244	400	597		
		Weight (plf)					5.2		6.5	7.7	8.8		
2.0E	3 1/2"	Moment (ft-lbs)					10,420		15,955	21,840	28,180		
		Shear (lbs)					6,870		8,590	10,125	11,575		
		Moment of Inertia (in. ⁴)					250		488	800	1,195		
		Weight (plf)					10.4		13	15.3	17.5		
Microllam® LVL													
2.0E	1 3/4"	Moment (ft-lbs)	2,125		3,555	5,600	5,885	8,070	8,925	12,130	15,555	19,375	23,580
		Shear (lbs)	1,830		2,410	3,075	3,160	3,740	3,950	4,655	5,320	5,985	6,650
		Moment of Inertia (in. ⁴)	24		56	115	125	208	244	400	597	851	1,167
		Weight (plf)	2.8		3.7	4.7	4.8	5.7	6.1	7.1	8.2	9.2	10.2
Parallam® PSL													
2.0E	3 1/2"	Moment (ft-lbs)					12,415	13,055	17,970	19,900	27,160	34,955	43,665
		Shear (lbs)					6,260	6,430	7,615	8,035	9,475	10,825	12,180
		Moment of Inertia (in. ⁴)					231	250	415	488	800	1,195	1,701
		Weight (plf)					10.1	10.4	12.3	13.0	15.3	17.5	19.7
2.0E	5 1/4"	Moment (ft-lbs)					18,625	19,585	26,955	29,855	40,740	52,430	65,495
		Shear (lbs)					9,390	9,645	11,420	12,055	14,210	16,240	18,270
		Moment of Inertia (in. ⁴)					346	375	623	733	1,201	1,792	2,552
		Weight (plf)					15.2	15.6	18.5	19.5	23.0	26.3	29.5
2.0E	7"	Moment (ft-lbs)					24,830	26,115	35,940	39,805	54,325	69,905	87,325
		Shear (lbs)					12,520	12,855	15,225	16,070	18,945	21,655	24,360
		Moment of Inertia (in. ⁴)					462	500	831	977	1,601	2,389	3,402
		Weight (plf)					20.2	20.8	24.6	26.0	30.6	35.0	39.4

(1) For product in beam orientation, unless otherwise noted.

LVL

Example – Beam 4

Given: span = 24 ft.

D 6 psf Lr 20 psf

130 plf (total load)

TRY LVL 2.0E 1 3/4" x 14"

$$S_x = \frac{b d^2}{6} = \frac{1.75 (14)^2}{6} = 57.16 \text{ in}^3$$

$$f_b = \frac{M}{S_x} = \frac{9360 (12)}{57.16} = 1965 \text{ psi}$$

$$A = 1.75 (14) = 24.5 \text{ in}^2$$

$$f_v = \frac{3}{2} \frac{V}{A} = 1.5 \frac{1560}{24.5} = 63.7 \text{ psi}$$

Weyerhaeuser – Trus Joist – LSL – LVL – PSL

DESIGN PROPERTIES

Design Stresses⁽¹⁾ (100% Load Duration)

Grade	Orientation	G Shear Modulus of Elasticity (psi)	E Modulus of Elasticity (psi)	E _{min} Adjusted Modulus of Elasticity ⁽²⁾ (psi)	F _b Flexural Stress ⁽³⁾ (psi)	F _t Tension Stress ⁽⁴⁾ (psi)	F _{c,1} Compression Perpendicular to Grain ⁽⁵⁾ (psi)	F _{c,2} Compression Parallel to Grain (psi)	F _v Horizontal Shear Parallel to Grain (psi)	SG Equivalent Specific Gravity ⁽⁶⁾
TimberStrand® LSL										
1.3E	Beam/Column	81,250	1.3 x 10 ⁶	660,750	1,700	1,075	710	1,835	425	0.50 ⁽⁷⁾
	Plank	81,250	1.3 x 10 ⁶	660,750	1,900 ⁽⁸⁾	1,075	635 ⁽⁹⁾	1,835	150	0.50 ⁽⁷⁾
1.55E	Beam	96,875	1.55 x 10 ⁶	787,815	2,325	1,070 ⁽¹⁰⁾	900	2,170	310 ⁽¹⁰⁾	0.50 ⁽⁷⁾
Microllam® LVL										
2.0E	Beam	125,000	2.0 x 10 ⁶	1,016,535	2,600	1,555	750	2,510	285	0.50
Parallam® PSL										
1.8E	Column	112,500	1.8 x 10 ⁶	914,880	2,400 ⁽¹¹⁾	1,755	545 ⁽¹¹⁾	2,500	190 ⁽¹¹⁾	0.50
2.0E	Beam	125,000	2.0 x 10 ⁶	1,016,535	2,900	2,025	625 ⁽¹²⁾	2,900 ⁽¹³⁾	290	0.50

(1) Unless otherwise noted, adjustment to the design stresses for duration of load are permitted in accordance with the applicable code.

(2) Reference modulus of elasticity for beam and column stability calculations, per NDS®.

(3) For 12" depth. For other depths, multiply F_b by the appropriate factor as follows:

→ – For TimberStrand® LSL, multiply by $\left[\frac{12}{d}\right]^{0.092}$

→ – For Microllam® LVL, multiply by $\left[\frac{12}{d}\right]^{0.136}$

→ – For Parallam® PSL, multiply by $\left[\frac{12}{d}\right]^{0.111}$

(4) F_t has been adjusted to reflect the volume effects for most standard applications.

(5) F_{c,1} may not be increased for duration of load.

(6) For lateral connection design only.

(7) Specific gravity of 0.58 may be used for bolts installed perpendicular to face and loaded perpendicular to grain.

(8) Values are for thickness up to 3 1/2".

(9) For members less than 1 1/4" thick and in plank orientation, use F_{c,1} of 670 psi.

(10) Value accounts for large hole capabilities. See **Allowable Holes** on page 26.

(11) Value shown is for plank orientation.

(12) Use 750 psi for Parallam® PSL identified with plant number 0579.

(13) For column applications, use F_{c,2} of 500 psi. Alternatively, refer to ESR-1387, Table 1, footnote 15.

LVL

Example – Beam 4

Given: span = 24 ft.

D 6 psf Lr 20 psf

130 plf

1 3/4" x 14"

F_b ADJUSTMENT

$$C_D = 1.25$$

$$C_V = \left[\frac{12}{d}\right]^{0.136} = \left(\frac{12}{14}\right)^{0.136} = 0.979$$

C_L (PER NDS 3.3.3)

BRACED BY RAFTERS ∴ C_L = 1.0

C_M, C_t, C_r = 1.0

LVL 2.0 E

$$F_b = 2600 \text{ psi}$$

$$F_v = 285 \text{ psi}$$

$$F_b' = 2600(1.25)(0.979) = 3182 \text{ psi}$$

$$F_b' = 3182 > 1965 = f_b \quad \therefore \text{OK}$$

$$F_v' = 285(1.25) = 356 \text{ psi}$$

$$F_v' = 356 > 63.7 = f_v \quad \text{OK}$$

LVL

Example – Beam 4

Given: span = 24 ft.

D 6 psf Lr 20 psf

130 plf

1 3/4" x 14"

$$I = \frac{b d^3}{12} = \frac{1.75 (14)^3}{12} = 400 \text{ in}^4$$

5. Check deflection

$$\Delta = \frac{5 w l^4}{384 EI} = \frac{5 (130) (24)^4 (1728)}{384 (20000000) (400)} = 1.21 \text{ in}$$

$$\frac{L}{240} = \frac{24(12)}{240} = 1.20 \approx 1.21 \text{ in} \text{ OK } \checkmark$$